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Objective:

In this program we developed a novel approach to achieve, in a relatively simple manner,
ordered self-assembled quantum dot (SAQD) arrays with long range ordering and controlled
three-dimensional periodicity. The ordering of the array relies on the nucleation of the SAQDs

on a periodic lattice of surface specific sites.

Program Summary and Highlights:

Year1  Demonstration of periodic stressor lattice based on a dislocation cross-grid.
Optimization of re-growth on twist-bonded layers
Completion of mechanics of twist-bonded layers
Decision to abandon twist-bonding
Development of holographic lithography for periodic mesa lattice
Demonstration of quantum dot (QD) growth on the holographically-defined lattices
Demonstration of strong photoluminescence from capped QDs on mesa lattice

Year2  Addition of a stressor layer to the mesa lattice
Demonstration of 2D periodic QD arrays
Demonstration of strong PL from periodic QD lattices

Year3  Demonstration of 3D periodic QD arrays
Completion of comprehensive mechanics studies of subsurface QDs
Preliminary demonstration of GaN QDs on partially relaxed AIN buffers.

nopsis:

Overall, in this program, we developed high quality 2D and 3D periodic quantum dot lattices that
show strong photoluminescence. In the initial stages of the program, we worked on QD growth
on a periodic stressor lattice formed by ordered subsurface dislocations. The dislocation grid
was formed by twist bonding. However, this approach failed because the buffer layer regrowth
thickness was too large to a sustain a sufficient strain modulation. We then developed
holographic lithography and formed a mesa lattice. In the absence of a stressor, the QDs would
typically nucleate in the mesa valleys, not the mesa tops. With the addition of a stressor layer,
we demonstrated high quality QD growth on the mesa tops and subsequent stacking of the dots.
This work was guided by solid mechanics calculations, careful buffer layer growth studies

In the second year of the program, we have successfully developed a periodic subsurface stressor
lattice that has enabled the growth of ordered two-dimensional InAs quantum dot arrays. The
periodicity of these arrays is controlled by holographic lithography.




The full details of this work is found in the Appendices I at the end of this report and two
attached papers.
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Lateral ordering of quantum dots by periodic subsurface stressors

A. E. Romanov,® P. M. Petroff, and J. S. Speck?

Materials Department, University of California, Santa Barbara, California 93106

(Received 24 November 1998; accepted for publication 18 February 1999)

We investigate the possibility of using subsurface dislocation arrays as a tool for controlling the
nucleation of self-assembled quantum dots (SAQDs). A quantitative model predicts that periodic
nonuniform elastic fields on the surface induced by dislocations may control the lateral ordering
SAQDs. The effect of dislocations is shown to be comparable to the interaction between buried and
surface dots which leads to vertical dot stacking. The periodic subsurface dislocation arrays
necessary for dot ordering can be produced by twist wafer bonding and backside substrate removal.
© 1999 American Institute of Physics. [S0003-6951(99)00916-X]

By providing a way for investigating three-dimensional
confinement of carriers and excitons, self-assembled quan-
tum dots (SAQDs) have attracted substantial recent
attention.! Size distribution and dot density are among the
most important issues for SAQD device application (e.g.,
quantum dot lasers). SAQD formation is often observed in
mismatched epitaxy.2 For example, the Stranski—Krastanow
(SK) growth of InAs (or In,Ga, _ ,As) on GaAs first involves
the growth of a ~1-2 monolayer thick ‘‘wetting layer’’ fol-
lowed by coherent island formation.>> The SAQDs may be
buried by growth of the same material as the underlying
substrate. Subsequent growth of the strained composition on
the buried dot template has been shown to lead to vertical
stacking of dots provided that the thickness of the interven-
ing layer (the “‘spacer layer’’) is on the order or thinner than
the lateral dimension of individual dots.** Despite the possi-
bility for vertical ordering of dots, the SAQDs do not show
lateral order. Theoretical modeling suggests that lateral or-
dering of SAQDs will lead to both improved size uniformity
and the possibility of long range correlation in the electronic
structure of the dot assembly.®’

The aim of the present work is in developing the tech-
nique for controlling the dot nucleation and growth condi-
tions at the surface. Since typical dots have mesoscopic sizes
(diameter d~50-200 A, height c~30-60A, and dot spac-
ing 1=150-1000A),'~5 their behavior can be most effec-
tively influenced on the mesoscopic level. Thus, it is neces-
sary to develop a technique that can produce well-controlled
preferred surface sites for dot nucleation with mesoscale pe-
riodicity. Below we will demonstrate that the interfacial dis-
location arrays, such as may be achieved in wafer bonding
and backside substrate removal, provide a reasonable and
practically important example of two-dimensional periodic
subsurface stressors that could be used for that nucleation of
a periodic lattice of islands.

The role of uniform strains and stresses in the processes
of island nucleation and evolution has been addressed in a
number of theoretical and experimental studies.®!! It has
been previously shown that surface roughness is an effective

dpermanent address: A. F. Ioffe Physico-Technical Institute, 194021 St.
Petersburg, Russia.
YElectronic mail:speck@mrl.ucsb.edu
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mechanism for strain energy release in lattice mismatched
epitaxial layers.’ Freund has shown that strain affects surface
diffusion and further demonstrated that interfacial misfit dis-
locations could be responsible for surface roughness of semi-
coherent films.!"!? Recently, similar ideas were applied to
the analysis of dot stacking.*>’'* Due to the lattice mis-
match (for example for InAs dots in a GaAs matrix have a
misfit f=0.067), buried dots become strong sources of elas-
tic strains and stresses. Calculations of the elastic fields have
been carried out under different assumptions and by using
various techniques.'*!> It was assumed that new quantum
dots nucleate at the positions that minimize the total elastic
energy of the system of buried and surface dots.”!> An alter-
native approach by Xie et al.* (but similar to the approach of
Jonsdottir and Freund'?) treated adatom migration along the
surface strained by a buried dot.

To analyze the influence of different types of stressors
on the evolution of quantum dot ensembles, we use the elas-
tic energy density e at the surface as a measure of the pref-
erence of new quantum dot formation at the surface or in the
subsurface layer (a similar criteria was used by Rouvimov
et al.’). We calculate this elastic energy density for a cross
grid of screw dislocations, as well as for subsurface dilatated
inclusions. In the case of dislocations, we derive the analytic
strain field for a cross grid of dislocations based on the
known solution for a single subsurface screw dislocation.'
‘We approximate the buried quantum dots as ellipsoidal sub-
surface inclusions, for which the analytical solution for the
elastic fields has been previously developed.”

The geometry of a subsurface cross grid of screw dislo-
cations is shown in Fig. 1(a). One family of screw disloca-
tions has lines parallel to the z axis, and the other family has
lines parallel to the y axis; the yz plane coincides with the
free surface where the quantum dots will form. The spacing
between dislocations in each array is /, and they are placed at
distance h from the free surface. The dislocation Burgers
vectors are bge, or be,, where by is the magnitude of the
dislocation Burgers vector, and e, and e, are unit vectors
along the corresponding coordinate axes. It is well known
that such a planar dislocation cross grid represents a model
for a small angle twist boundary.!® The angle of misorienta-
tion w is related to parameters of the array by the relation
w=b,/l, where w<1.

© 1999 American Institute of Physics
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FIG. 1. Cross grid of screw dislocations in a subsurface layer. (a) Schematic
representation of the dislocation arrangement in the subsurface layer. / is the
spacing between dislocations and 4 is the distance of the cross grid from the
free surface. (b) Contour plot of stress o, at the surface due to screw
dislocation cross grid; the stress is in units of Gw. The solid horizontal and
vertical lines show the position of the dislocations. The inclined thin lines
correspond to zero stress contours. The positive and negative stress contours
are shown as solid and dashed curved lines, respectively. (¢) Dependence of
the maximum change in energy density e (in units of Gw?) on the nor-
malized distance h/I.

The elastic fields for the cross grid of screw dislocations
have been found by summing the contributions of all indi-
vidual dislocations. In this analysis, the stresses of an indi-
vidual dislocation should satisfy boundary conditions at the
free surface. For the case of a screw dislocation, the bound-
ary conditions can be achieved with the aid of an image
dislocation construction.'® The only nonzero component of
stresses at the surface (x=0) is given as

0y,=Gw sinh(27h) —
cosh(2h)—cos(27y)

1
- _ , 1)
cosh(2wh)—cos(27Z)

Romanov, Petroff, and Speck 2281

where normalized values for y,z, and & (F=y/l, Z=2z/I and
F=h/1) are used, and G is the shear modulus. An example of
the stress distribution for #=0.25 is shown in Fig. 1(b). It is
clear from the figure that the stress field at the surface is
periodic and nonuniform. For example, extreme values ap-
pear at the points directly above dislocation lines and half-
way between dislocations of the orthogonal array. The
stresses vanish directly above the dislocation intersections,
as well as above the center of the square dislocation cells. As
a result, the elastic energy density at the surface is also non-
uniform. The distribution of elastic energy density e®! has
fourfold symmetry and periodicity //y2 which is aligned 45°
with respect to the dislocation line directions. At the posi-
tions of maximum, the elastic energy density e%! has the
following dependence on the distance of dislocations from
the surface:

2 sinh?(27h)

W= G ? — )
[cosh?(27h)— 1}

@

The function e%'(%) is shown in Fig. 1(c). The energy e®*!
gives a contribution to the dot nucleation energy that is con-
trollable, thus inducing likely nucleation sites. It is useful to
note that there is no interaction energy between the screw
dislocations and the elastic field of the nucleating dots; the
dot elastic field arises due to the dilatation misfit f with re-
spect to surrounding material.

The interaction energy between quantum dots plays an
important role in the vertical ordering of stacked dots. "3
To investigate this effect in detail, and also to compare it
with the case of dislocations, we have calculated the elastic
field of an array of buried dots. The precise shape of subsur-
face dots is still unknown and is a topic of controversy.
However, it appears that the subsurface dots have a truncated
pyramidal shape. Here, we model a single dot as an ellipsoi-
dal inclusion with equal misfit f along its principal axes be-
cause there are known solutions in elasticity theory for this
problem (which include the effects of the free surface). Fur-
thermore, we believe that the general elastic features for the
embedded dots can be reasonably represented by ellipsoidal
inclusions since the size and size aspect ratio (or ratios) of
the ellipsoidal inclusion can match those of a pyramidal in-
clusion. The geometry of the problem is given in the Fig.
2(a); inclusions with lengths ¢, d, and d along the x, y, and z
axes, respectively (where we have used d>c) are located at
distance / from the free surface of the nodes of square lattice
with a periodicity /. The solution for the elasticity boundary
value problem for a single ellipsoidal inclusion in such a
geometry was given by Seo and Mura.!” Using corrected
expression from Ref. 17, the elastic strains of the inclusion
array can be calculated for all material points, including the
free surface. Figure 2(b) gives an example of the distribution
of the trace of the stress tensor at the free surface o,,+ 0,
(this is twice the biaxial hydrostatic stress) due to the sub-
surface dot array. For the case of a new quantum dot nucle-
ating at the surface, the forming dots on the surface interact
with buried dots; i.e., there exists preferential sites for dot
nucleation at the surface due to the existing stress field. For
an ellipsoidal inclusion, the maximum energy density release
€% takes place directly above the buried dot, thus giving rise
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FIG. 2. An array of dots (dilatated inclusions) near a free surface. (a) An
array of ellipsoidal inclusions with dimensions ¢, d, and d along the x, y, and
z axes, respectively, at a distance h from the free surface; the misfit strain
between the inclusion and matrix is f and the distance between inclusions is
1. (b) Contour plot of twice the biaxial hydrostatic stress oy, + 0, at the free
surface due to buried inclusions; stress is in units of Gf. For the example
shown here, h=1.5¢, d=3c¢, and I=6c. The shaded circles show the po-
sition of the inclusions. Positive and negative stresses are shown by solid
and dashed lines, respectively. (c) Dependence of the maximum change in
the energy density ¢™ (in units of Gf?) on the normalized distance h/c.
For this plot d=5c¢. In all calculations, Poisson’s ratio v was taken as 0.3.

to vertical ordering of the dots. The dependence of e%'(h/c)
on the position of the buried dot is shown in the Fig. 2(c).
Note in Figs. 2(b) and 2(c), we have used different d/¢ ratios
to demonstrate the flexibility of our approach. In this analy-
sis, we neglect the influence of neighboring buried dots, be-
cause for the set of typical experimental parameters, the con-
tribution from neighboring dots is negligible.

To compare the influence of a dislocation cross grid and
buried dot on the nucleation of new dots, we consider the
characteristic dependencies of the energy densities on the
parameters w and f

edisl~ GwZ,
®3
edotN sz.
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The value of  depends on the misorientation induced by the
cross grid of screw dislocations. For the case of w
=0.0089rad (=0.5°), the dislocations have spacing !
=115b,, or for a typical -V material, e.g., GaAs, [
~460 A. The misfit strain f can also vary in a broad range.
For example, for IngsGagsAs dots in a GaAs matrix, f
=0.033. Therefore we assume that w and f may have com-
parable magnitudes, but typically f may be a factor of ~2—35
larger than w. Additionally, % and ¢ have different de-
pendencies on A. Due to the strong screening of the elastic
fields of the cross grid of screw dislocations, e¥*! has a rapid
decay in A. It is known from experiments® that the effect of
vertical ordering manifests itself for thicknesses h/c<3. To
reach the same magnitude of strain energy density at the
surface, the dislocation cross grid should be placed at dis-
tance h/1~0.1-0.2. For the values used above (w=0.5° and
b=4 A), this would give fused layer thickness of ~50-100
A, which is comparable to the layer thicknesses and twists
experimentally demonstrated in twist wafer bonding for
“‘compliant’” substrates.'® This estimate gives an upper limit
for the thickness of the twisted layer, which is necessary to
influence the quantum dot nucleation at the surface. Obvi-
ously, the use of a linear continuum elasticity description of
dislocations is limited by the film thickness comparable with
the dislocation core radius (where the theory of elasticity
approach is not precise). However, this does not mean that
the approach developed here cannot be applied to real fused
layers, because the thickness of such layers for &/l
=0.1-0.2 still is enough to have at least tens of atom layers
from the dislocation to the film surface, where therefore the
effect of dislocation cores may be neglected.

The work was supported by AFOSR (Grant No. F49620-
98-1-0367). The authors thank Mike Prairie for suggesting
this work. The authors are grateful to G. E. Beltz for stimu-
lating discussions.
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Controlled ordering and positioning of InAs self-assembled quantum dots™

H. Lee, J. A. Johnson, J. S. Speck, and P. M. Petroff?
Materials Department, University of California, Santa Barbara, California 93106

(Received 17 January 2000; accepted 25 May 2000)

An experimental approach has been developed to control the formation of InAs self-assembled
islands. A lithographically defined mesa lattice on the surface was used to control the growth
kinetics and island nucleation. Two distinct island formation regimes were observed from InAs
islands grown on patterned GaAs (100) substrates. In the case of direct growth on patterned
substrates, a type I islanding was observed, in which all the islands formed between mesas.
Incorporating a stressor layer into the regrowth on the patterned substrate yielded a type island
nucleation, where all the islands nucleated on top of the mesas. The possible mechanisms involved
in the long range ordering and positioning of islands are discussed. © 2000 American Vacuum

Society. [S0734-211X(00)06604-X]

I. INTRODUCTION

Self-assembled quantum dots (QDs) have been intensely
studied in the last several years due to their appealing
electronic and optical properties.!~> Unique physical proper-
ties have been observed in QD structures™ and device
applications using QDs, such as lasers, detectors, and
memories have been explored.5® The self-assembled
growth of QDs relies on the strain induced island formation
via the Stranski—Krastanow growth mode,3 in which island
formation is the first step to minimize strain energy in
coherent heteroepitaxial layers.” Many lattice-mismatched
systems, such as InAs/GaAs, Ge/Si, and InAs/InP, have
been investigated with the aim of understanding and
controlling island formation.!®~2! In particular, the interplay
between island nucleation and surface patterning has
been studied extensively. This has been done for both larger
features defined by conventional lithography>~*® and
for nano-scale inclusions patterned using electron
beam techniques.zo'21 Subsurface strain fields have also
been shown to play a controlling role in island nucleation, as
seen in vertically stacked QDs.>!%!! The use of strain
coupling has been extended to the highly anisotropic
PbSe/PbEuTe system to produce excellent three-dimensional
(3D) quantum dot lattices.? Despite all these efforts, the
ability to control the positioning of II-V islands remains
limited and this poses a great hurdle to the incorporation of
QDs into devices.

We extend these ideas by using a technique, which
combines lithography with in situ lateral strain engineering
to restrict the island nucleation to mesoscopic arcas of
the wafer surface. In our experiments, submicron mesa
arrays were fabricated using holographic lithography and
wet chemical etching. Strain engineering was achieved
by incorporating a coherently strain In;,GaygAs layer,
which we call stressor, into the regrown structure. Due to
the patterned features, the strain of the Iny,GaggAs

*No proof corrections received from author prior to publication.
2 Author to whom correspondence should be addressed; electronic mail:
petroff @engineering.ucsb.edu
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was modulated and energetically favorable nucleation
sites were created on top of the mesas. Excellent long range
island ordering is obtained. In this article, details of our tech-
nique will be discussed and both results of islands formed
without stressor (type I nucleation) and with stressor (type II
nucleation) will be presented and compared. Strong photolu-
minescence was also observed from these InAs QDs grown
on patterned substrates.

Il. EXPERIMENT AND DISCUSSION

Ordering of InAs self-assembled QDs on mesa lattices
was promoted by deposition of InAs under favorable growth
kinetics and thermodynamic conditions. Two distinct sets of
regrowth structures, which corresponded to types I and II
islanding, were studied. They are illustrated in Fig. 1. As will
be shown, engineering of the regrowth structure on the mesa
lattices allows a control of the island nucleation site position-
ing.

A. Defining the mesa lattices

Holography was used to pattern the GaAs (001) sub-
strates, since it provided a simple and efficient method to
create nanoscale mesa lattices over large areas. In this pro-
cess, a GaAs substrate was first coated with photoresist
(Shipley 1400-4) and then exposed in a holographic appara-
tus twice, with the sample rotated 90° after the first expo-
sure. The patterns were transferred onto the GaAs substrates
by wet chemical etching using H;PO,:H,0,:H,0=3:1:75.
The resulting pattern was a checkerboard array of square
mesas. The unit cell of the lattice was 250 nmX 250 nm. The
mesas resembled truncated pyramids 25 nm high with a base
width of 170 nm and top dimension <20 nm. Holography is
very flexible, as it is easy to adjust the mesa dimensions,
spacing, and orientation. In this study, we explored two dif-
ferent mesa lattice orientations. One lattice had its unit cell
aligned along (110} (type A) and the other was rotated to
aligned along (100) (type B). In these two different orienta-
tions, mesas had similar shape but were bound by different
facets. After overgrowth, they showed distinct features, as
described below.

0734-211X/2000/18(4)/2193/4/$17.00 ©2000 American Vacuum Society 2193
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FiG. 1. Sample structures for two types of regrowth. (a) Schematic of the
type 1 islanding. (b) Schematic of type II islanding.

B. Regrowth of the GaAs buffer layer on patterned
GaAs surfaces

Before introduction into the molecular beam epitaxy
(MBE) system, the patterned GaAs substrates were thor-
oughly cleaned in solvents and a fresh oxide layer was
formed after a 10% HCI etch. The MBE regrowth started
with a thermal desorption of the oxide layer under As, flux
(5% 107% Torr) at 630 °C. It was followed by the growth of
a GaAs buffer layer at 600 °C. In situ reflection high energy
electron diffraction (RHEED) was used to monitor the sur-
face. Since a thin buffer layer was needed to preserve the
surface patterned features, multiple growth interruptions
(10 s every 5 nm) were used during the deposition to accel-
erate surface recovery from damages associated with pro-
cessing and oxide desorption.

Figure 2 shows atomic force microscopy (AFM) images
of the mesa lattices surfaces after 40 nm of GaAs was de-
posited on the two types of mesa patterns. In Figs. 2(a) and
2(b), the images show the evolution of lattices, which prior
to regrowth had unit cell vectors parallel to (110) and (100)
directions, respectively. Mesas in both lattices elongated in
the [110] direction giving new mesa base dimensions on the
order of 200 nmX 300 nm. The mesas height was reduced to
5 nm and the top was flattened to 50 nmX200 nm. The
observed anisotropic growth is quite common in MBE of
-V compounds. It is caused by the different diffusion
rates in the two (110) directions and enhanced by the mul-
tiple growth interruptions during the GaAs buffer layer depo-
sition. Associated with this elongation, the individual mesa
in the type A lattice (along (110)) has developed new facets.
In this case, the facets on each mesa evolved from {10m} to

{11n}.
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()

FiG. 2. AFM images of regrowth after 40 nm GaAs. (a) on type “‘A’’ mesa
lattice and (b) on type ‘‘B’’ mesa lattice. The unit cell of each lattice is also
indicated.

C. Growth of InAs island on patterned substrates

After the GaAs buffer layer was grown at 600 °C, the
substrate temperature was lowered to 530 °C to deposit InAs
islands. We used RHEED to monitor the island formation.
The characteristic streaky to spotty RHEED pattern transi-
tion was observed after 1.7 ML of InAs were deposited, thus
indicating the onset of 3D islands formation."**> AFM im-
ages of InAs QDs on both mesa orientations with 40 nm
GaAs buffer layer are shown in Fig. 3. These images show a
type I islanding, in which the islands are formed between
mesas.

As Fig. 3(a) shows, distinct one-dimensional (1D) ordered
island arrays were obtained on type A mesa lattices. These
preferred island nucleation sites are characteristic of type A
mesa lattices only and may be a direct consequence of the
mesa facet evolution during the GaAs buffer layer growth.
Figure 3(b) shows the results of a growth sequence similar to
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(b)

FiG. 3. AFM images of InAs QDs on (a) type ‘‘A’’ mesas and (b) on type
““B’’ mesas.

that used in Fig. 3(a) but for a ‘“B’’ mesa lattice. In both
“A”’ and B type mesa lattices, all the islands were located in
the valleys between the mesas. Similar results were obtained
for InAs deposited on 60 nm GaAs buffer layers. The island
diameter formed on patterned substrates ranged from 27 to
40 nm and their sizes appeared to be larger than on planar
substrates (22—30 nm).

A possible explanation for the type I islanding is as fol-
lows. To minimize surface energy, concave regions will tend
to fill and planarize upon overgrowth.? In the initial stages
of QD deposition on the mesa arrays, the growth of the InAs
wetting layer may be enhanced in the valleys due to the
negative mean curvature. The wetting layer reaches the criti-
cal thickness rapidly inside the valleys, triggering the two-
dimensional (2D) to 3D growth transition. Hence, the islands
grow preferentially between the mesas. This explanation also
accounts for the larger sized islands found between the me-
sas, compared to those on the planar surface.

Efficient photoluminescence (PL) was observed from type
I islands after they were capped with 40 nm GaAs. The PL
spectra shown in Fig. 4 were collected at 3 K with a cooled
InGaAs photomultipler tube. An Ar-ion laser was used to
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FiG. 4. Photoluminescence spectra from InAs QDs grown on patterned and
unpatterned substrates at 3 K.

excite the QDs with a power density of 10 kW/cm?. For
comparison, we also show a PL spectrum of an unpatterned
sample grown at the same time as the patterned sample. The
PL intensity from the QDs on patterned substrates is compa-
rable to that of an unprocessed sample. Excited states are
also observed at this pumping density. The energy of the
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(b) Number of islands on top of mesa

FiG. 5. (a) AFM images of InAs QDs grown on a patterned substrate with a
20 nm Iny,GaggAs stressor layer. (b) Histogram of the number of islands
found on top of the mesas.
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ground state PL line (1.18 eV) for the InAs QDs grown on
mesa lattices is blue shifted 34 meV with respect to the un-
patterned sample. This also indicates that islands formed on
patterned surfaces differ in size and composition. The strong
PL signal observed from the InAs QDs grown on patterned
substrates attests of the good quality of the InAs QDs and it
indicates our regrowth surface has recovered from process-
ing damages.

D. Growth of InAs QDs on mesa tops

A second nucleation regime can be achieved by introduc-
ing strain into the regrowth. By adding a strained
Iny,GaygAs layer after the GaAs buffer, the preferential
nucleation of the QDs on mesa tops, type II islanding, was
achieved. The sample structure, illustrated in Fig. 1(b), was a
60 nm GaAs buffer layer grown at 600 °C, followed by a 20
nm Ing ,GaggAs stressor layer, and 10 nm GaAs grown at
510°C. The InAs islands were then deposited at 530 °C. An
AFM image of InAs islands grown on a type B patterned
substrate with stressor layer is shown in Fig. 5(a). The ma-
jority (over 90%) of InAs QDs were formed on top of mesas.
Excellent island position control and long range 2D ordering
were achieved with the use of a stressor layer. For this mesa
size, there were on average close to four islands on top of
each mesa, as indicated by the histogram shown in Fig. 5(b).
Type A mesa arrays, with the same regrowth conditions, also
exhibited long range QD ordering with the islands nucleating
on top of the mesas.

The effect of the stressor layer on the mesa island posi-
tioning is critical. Islands on top of the mesas are analogous
to the observed vertical stacking of quantum dots. Due to the
patterning, the stressor layer can partially relax at the mesas
peak, thus locally straining the thin GaAs barrier above the
Iny,GaggAs. When the quantum dots are deposited, InAs
preferentially accumulates where the strain energy is mini-
mized on the growth surface, i.e., at the mesa tops. The
thickness and composition of the stressor layer is crucial for
partial strain relaxation to occur effectively at the mesas.
Indeed, for an Iny,GajgAs stressor below 5 nm, all the is-
lands are found in the valleys between mesas. The driving
force to nucleate islands on top of the mesas must exceed the
tendency for In to accumulate in the valleys as in type I
nucleation. Detailed modeling of pattern induced strain
modulation in type II structures will be discussed in a forth-
coming publication.

lil. SUMMARY

The present work demonstrates that control of the nucle-
ation site positioning of InAs self-assembled QDs can be
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achieved by MBE deposition on a GaAs surface with a mesa
lattice. Long range ordering is imposed by the presence of
the mesas and/or by the introduction of a stressor layer.
These techniques produce optically active QDs and provide a
promising route for many device applications.

ACKNOWLEDGMENTS

This research was supported by an AFOSR Grant No.
F49620-98-1-0367 monitored by Dan Johnstone. The authors
wish to thank Mike Prairie (GEB), A. Romanov, and G.
Beltz for their useful discussions.

1Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

2L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux,
Appl. Phys. Lett. 47, 1099 (1985).

3D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, and P. M.
Petroff, Appl. Phys. Lett. 63, 3203 (1993).

“H. Drexler, D. Leonard, W. Hansen, J. P. Katthaus, and P. M. Petroff,
Phys. Rev. Lett. 73, 2252 (1994).

57, -Y. Marzin, J. -M. Gerard, A. Izrel, D. Barrier, and G. Bastard, Phys.
Rev. Lett. 73, 716 (1994).

®N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M.
Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U.
Richter, P. Werner, U. Gosele, and J. Heydenreich, Electron. Lett. 30,
1416 (1994).

D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998).
8T. Lundstrom, W. Schoenfeld, H. Lee, and P. M. Petroff, Science 286,
2312 (1999).

97. Tersoff and F. K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

10Q). Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75,
2542 (1995).

UG, S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Phys. Rev.
Lett. 75, 952 (1996).

124, Lee, R. Lowe-Webb, W. Yang, and P. C. Sercel, Appl. Phys. Lett. 71,
2325 (1997).

3D, S. L. Mui, D. Leonard, L. A. Coldren, and P. M. Petroff, Appl. Phys.
Lett. 66, 1620 (1995).

1A, Konkar, R. Heitz, T. R. Ramachandran, P. Chen, and A. Madhukar, J.
Vac. Sci. Technol. B 16, 1334 (1998).

15y, Seifert, N. Carlsson, A. Petersson, L. -E. Wernersson, and L. Samuel-
son, Appl. Phys. Lett. 68, 1684 (1996).

18R, Tsui, R. Zhang, K. Shiralagi, and H. Goronkin, Appl. Phys. Lett. 71,
3254 (1997).

17T, 1. Kamins and R. S. Williams, Appl. Phys. Lett. 71, 1201 (1997).

18g Jeppesen, M. S. Miller, D. Hessman, B. Kowalski, I. Maximov, and L.
Samuelson, Appl. Phys. Lett. 68, 2228 (1996).

9G. Jin, J. L. Liy, S. G. Thomas, Y. H. Luo, K. L. Wang, and B. -Y.
Nguyen, Appl. Phys. Lett. 75, 2752 (1999).

2T, Ishikawa, S. Kohmoto, and K. Asakawa, Appl. Phys. Lett. 73, 1712
(1998).

21, Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, Appl. Phys.
Lett. 75, 3488 (1999).

22G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science 282, 734
(1999).

23Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, J. Appl. Phys. 76, 3347
(1994).

%M. Ozdemir and A. Zangwill, J. Vac. Sci. Technol. A 10, 684 (1992).

], Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675
(1996).




JOURNAIt OF 'APPLIED PHYSICS

VOLUME 89, NUMBER 8

15 APRIL 2001

Elastic fields of quantum dots in subsurface layers

A. E. Romanov

A. F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

G. E. Beltz and W. T. Fischer

Department of Mechanical and Environmental Engineering, College of Engineering,

University of California, Santa Barbara, California 93106

P. M. Petroff and J. S. Speck?®

Materials Department, College of Engineering, University of California, Santa Barbara, California 93106

(Received 22 August 2000; accepted for publication 11 January 2001)

In this work, models based on conventional small-strain elasticity theory are developed to evaluate
the stress fields in the vicinity of a quantum dot or an ordered array of quantum dots. The models
are based on three different approaches for solving the elastic boundary value problem of a
misfitting inclusion embedded in a semi-infinite space. The first method treats the quantum dot as
a point source of dilatation. In the second approach we approximate the dot as a misfitting oblate
spheroid, for which exact analytic solutions are available. Finally, the finite element method is used
to study complex, but realistic, quantum dot configurations such as cuboids and truncated pyramids.
We evaluate these three levels of approximation by comparing the hydrostatic stress component
near a single dot and an ordered array of dots in the presence of a free surface, and find very good
agreement except in the immediate vicinity of an individual quantum dot. © 2001 American

Institute of Physics. [DOIL 10.1063/1.1352681]

I. INTRODUCTION

Self-assembled quantum dots (SAQDs) have attracted
substantial recent attention because they offer the potential
for three-dimensional confinement of carriers and excitons
and have “‘atom-like” electronic states.? SAQD formation
is commonly observed in large mismatch epitaxy of chemi-
cally similar materials.'? For example, the Stranski—
Krastanow (SK) growth of InAs (or In,Ga,_,As) on GaAs
first involves the growth of a ~1 to 2 monolayer thick ‘‘wet-
ting layer”” followed by coherent island formation.”® The
SAQDs may be buried by the growth of the same materials
as the underlying substrate. Subsequent growth of the
strained composition on the buried dot template has been
shown to lead to vertical stacking of dots provided that the
thickness of the intervening layer (‘‘spacer layer’’) is in the
order or thinner than the lateral dimensions of the dot.*

It is now clear that dot ordering is driven by the elastic
field of subsurface stressors. Usually, these subsurface stres-
sors are buried dots themselves (which give rise to vertical
ordering).*® In group IV and III-V SAQD growth, the first
dot layer does not demonstrate lateral order and subsequent
layers show only vertical ordering (however, other subsur-
face stressors such as regular dislocation arrays'® or buried
strained layers grown on patterned substrates'! can initiate
lateral ordering). Buried subsurface stressors lead to a modu-
lation in the stress field and associated strain field on the
growth surface which affects both adatom diffusion'? and SK
island nucleation rates.>

The strain fields caused by SAQDs strongly affect the
electronic properties in the vicinity of the dots.!*"1 Two

dElectronic mail: speck@mrl.ucsb.edu

0021-8979/2001/89(8)/4523/9/$18.00 4523

strain effects are predominant in the electronic properties of
II-V semiconductors: changes in the conduction and va-
lence band levels (deformation potentials) and local electric
fields due to piezoelectric effects. The conduction band is
only affected by the hydrostatic strain, often referred to as
the dilatation or trace of the strain tensor. The valence levels
can change both with hydrostatic and shear strain. For zinc
blende structures, deviatoric strains (those strains which dif-
fer from pure hydrostatic strains) give rise to piezoelectri-
cally induced electric fields.'® In the general case for zinc
blende SAQDs, strain causes negligible change in the con-
fined energy levels within the dots, however, the conduction
and valence levels can be changed in the surrounding matrix.
Further, strain can cause local piezoinduced electric fields
within the dots and in the surrounding matrix.'® Additionally,
strain can strongly modify the phonon frequencies within the
dots in the surrounding material."’

Both for understanding ordering and the effects on elec-
tronic properties, it is important to determine the full elastic
fields in the dots and surrounding matrix. The elastic fields
depend on the lattice mismatch between the dot and matrix
material, the elastic properties of both the dot and the matrix,
the dot shape, and the position of dot with respect to the free
surface. A complete solution of the elasticity problem in the
most general case is not possible in closed analytical form.
Independent of quantum dots, the general inclusion problem
was extensively developed in the pioneering work of
Eshelby?®?! and we address this approach in the next section.
In the SAQD field, three main methods have been applied to
determine the elastic strains and stresses, namely: (i) theory
of inclusions based on the analytical solution of elasticity
equations (*‘Eshelby-like’ or related approaches),!41622-24
(ii) finite element methods (FEM),>?® and (iii) atomistic

© 2001 American Institute of Physics
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FIG. 1. General schematic of a buried quantum dot (QD). A wetting layer
(WL) is shown, which may precede the formation of an island during the
deposition of a dissimilar material onto a substrate. The island (quantum
dot) is subsequently covered by additional matrix (substrate) material.

modeling.?-3! The theory of inclusions provides integral ex-
pressions for elastic fields which can be integrated in closed
form only for the simplest inclusion shapes, such as cylin-
ders or spheres. Even with the simplification of isotropic
elasticity, the known application to quantum dots so far have
neglected the effects of the free surface. FEM is very effec-
tive for particular cases but does not provide general solu-
tions and is furthermore affected by the choice of boundary
conditions for the modeling domain. Atomistic models re-
quire accurate interatomic potentials and are further re-
stricted to small systems of atoms in comparison with dot
sizes and the surrounding matrix.

In this article we apply two analytic approaches for
SAQD mechanics which include the effect of the free surface
and the dot shape and compare these results with FEM cal-
culations. We concentrate on the far field solutions in the
analytic approaches, as our main interests are related to dot
ordering. However, we believe the analytic solutions are use-
ful for determining the strain effects on the electronic struc-
ture of the matrix.

Il. MODELING OF QUANTUM DOTS

From a continuum mechanics viewpoint, a quantum dot
can be thought of as an inclusion of some prescribed shape
embedded in a dissimilar matrix. Due to compositional dif-
ferences which give rise to a lattice parameter mismatch or
possibly a thermal expansion mismatch, the inclusion and
surrounding matrix will be under a residual state of stress.
Moreover, the inclusion may possesses different elastic
moduli from the matrix material. Assuming a linear elastic
response, the resulting stress fields for such problems are
very cumbersome and have only been worked out analyti-
cally for limited geometries, including cuboids®?** and
ellipsoids***® in infinite and semi-infinite domains. For the
case of an ellipsoid in an infinite matrix, the solutions for this
class of problems were originally developed by Eshelby in
the 1950s.2%!

Figure 1 shows a schematic based on experimental ob-
servations, in which a wetting layer initially forms when a
material of new composition is deposited onto a substrate.
After the wetting layer achieves several monolayers of thick-
ness, an instability in growth leads to isolated island forma-
tion (future quantum dots)."* Currently, there are also indi-
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cations that the wetting (transitional) layer may be much
thicker (comparable with the dot height) and may possess
different chemical composition than nucleating quantum
dots. We do not address this issue in this article. Rather, we
only consider the elastic field from the dot itself and do not
consider the wetting. Although there is another controversy
over the actual shape of quantum dots, it is clear from trans-
mission electron microscopy (TEM) studies that they ini-
tially form as four-sided pyramids. Truncation of capped
pyramids may be an illusion induced by strain fields ob-
served by TEM. This possibility is supported by researchers
reporting detailed contrast evidence in favor of sharp-capped
pyramids.* This controversy has implications for the present
finite-element study. However, upper levels of pyramidal
dots are relatively unstrained, and therefore would add little
mechanical energy. For this reason, it is believed that the
question of pyramid truncation will not have a pronounced
effect on the conclusions to be obtained by modeling.

In this article we propose a number of simplified models
to describe the elastic field surrounding a quantum dot. The
simplest approach is to ignore the geometry of the dot alto-
gether, and to regard it as a point source of dilatation of
prescribed strength fV, where f represents the mismatch and
V represents the volume of an ‘‘equivalent”” dot, that is, the
real dot that is being simulated by the point source. The
parameter f represents the strain state developed in the quan-
tum dot, relative to an equivalent volume of matrix material,
if it were not constrained by the matrix; for example, if a dot
with lattice parameter ay is deposited onto a substrate sur-
face with lattice parameter a,, the misfit strain f is taken as
(as—agz)lay. When the island is subsequently surrounded by
matrix material, the constraint is uniform in three directions;
hence the misfit strain components become fJ;;. Similarly, a
thermal expansion mismatch gives rise to such a dilatational
self-strain (also known in the literature as the stress-free
strain or the ‘‘eigenstrain’’), so all sources of misfit may be
incorporated into the single parameter f. Of course, such an
approach is expected to yield expressions that break down in
the general vicinity of the dot.

A powerful method for the solution of a broad spectrum
of problems in elasticity derives from a consideration of
point forces applied at some point in the elastic body.>¢>" If
the response of a body to a point force (i.e., the Green’s
function) is known, the deformation caused by any distribu-
tion of forces can be obtained by superposition. For example,
the displacement field caused by a single point force applied
anywhere in an infinite elastic solid may be determined quite
straightforwardly from the field equations of elasticity.®’ If
the body is finite, as in the case of a semi-infinite space, a
traction-free boundary condition must be satisfied, thereby
giving a corrective term to the displacement field for an in-
finite solid.

In the case of a point source of expansion, three mutu-
ally perpendicular pairs of forces (each pair consists of a
dipole of opposing forces of magnitude P, separated by a
distance d along their mutual line of action) may be used (see
Fig. 2). If one considers a cube of volume V=4d>, the aver-
age stress in the cube is P/d?, which in turn can be related to
the strains arising from the misfit f via Hooke’s law. Apply-
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FIG. 2. Point source of dilatation at distance k from a free surface, repre-
sented as a cube with infinitely small dimension d. Three force dipoles P are
applied to the faces of this cube.

ing such an argument to an isotropic medium, one may arrive
at the relation Pd=[2(1+v)u/(1—2v)]fV, where u is the
material shear modulus and v is Poisson’s ratio. By taking
the limit as d— 0, maintaining Pd constant, the complete
elastic field for a point of expansion of a given strength may
be identified. Mindlin®® and Mura>*33 have provided the ap-
propriate expressions for such point sources, not only for a
generally anisotropic medium, but also for a point source
located in a semi-infinite, isotropic medium. The primary
advantage with this method is that the expressions are com-
pact, especially for the case of an isotropic medium, as illus-
trated in Sec. T A.

The next level of complexity would be to idealize the
quantum dot as an inclusion of some simplified shape, such
as spherical, ellipsoidal, or cuboidal. Mura®*3 has developed
expressions for an ellipsoidal inclusion in a half-space in an
extension of the point-source analysis described above by
integrating the appropriate Green’s function over the volume
of the inclusion. Chiu**** has provided similar results, but
for a cuboidal inclusion embedded in a semi-infinite me-
dium. Despite these relatively simple shapes, closed form
solutions are only possible for the ellipsoid when at least two
of the semiaxes are identical, as demonstrated below. In the
example to be discussed in Sec. III B, an oblate spheroid (an
ellipsoid with semiaxes a;=a,>a3), a depth h from the sur-
face, will be considered, either alone or as an ordered array
of spacing ! (see Fig. 3). Although the stress expressions are
more cumbersome than for the point sources of dilatation (as
given below in Sec. III B), the advantage is that a more re-
alistic idealization of the quantum dot geometry is achieved,
and in such a way that the effect of the aspect ratio of the dot
may be efficiently evaluated.

For the case of quantum dots with extreme aspect ratios,
for example, a relatively flat square or ‘‘penny-shaped’
quantum dot, the stress field may be approximated as that
due to an appropriately shaped prismatic dislocation loop,
the stress fields for which are well-known. As the quantum
dot deviates from an extreme aspect ratio, this method still
works, because the shape may be represented by an array of
prismatic  dislocation loops. Li** and Gutkin and
coworkers*®*! have exploited this equivalence for determin-
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a) b)

FIG. 3. Ellipsoidal inclusions used to model quantum dots. (a) An isolated
ellipsoidal inclusion at distance & from the surface, with semiaxes a;, a,,
and a3 in the corresponding coordinate directions. (b) A rectangular array of
the same ellipsoidal inclusions, with periodicity # in the lateral coordinate
directions.

ing the stress fields around various inclusion shapes, albeit in
a different context from quantum dot behavior. For the sake
of brevity, we do not outline this method in this article.

The final level of complexity undertaken in this article is
to evaluate the complete stress field in the vicinity of a
cuboidal or trapezoidal inclusion via the finite element
method (FEM). In other words, we model the geometries
similar to that of Fig. 1, excluding the wetting layer. The
FEM models can easily be expanded to include the wetting
layer (see, for example, Ref. 28); however, we do not under-
take that here since the primary goal is to make comparisons
with the quantum dot models based on point sources and
ellipsoidal inclusions mentioned earlier. For a typical trap-
ezoidal inclusion within a matrix unit cell, elastic solutions
may be approximated using a finite element mesh compris-
ing one quadrant of an arbitrarily deep matrix unit cell, with
appropriate boundary conditions imposing symmetry at the
lateral faces (see Sec. III C). The primary advantage with this
method is that more details concerning the stress field may
be revealed, especially near the sharp corners of the inclu-
sion. The FEM technique can readily include elastic anisot-
ropy combined with different elastic constants for the matrix
and the dot. The disadvantage is that a mesh must be created
for each dot geometry, and the size of the matrix mesh must
be made arbitrarily large in order to compare these results
with those of the point source or the inclusion.

To simulate this residual strain in the model presented
here, perfect bonding is assumed, and strains are imparted by
a ‘‘phantom’’ thermal expansion mismatch between the in-
clusion and the matrix. Of course, in the system simulated,
thermal expansion mismatch may or may not be a significant
effect. However, since the effect of introducing such a dif-
ferential expansion is to change the zero-stress lattice size for
both materials, there is no analytical difference between dif-
ferential strains induced by lattice mismatch, and those in-
duced by thermal expansion mismatch.

lil. ELASTIC SOLUTIONS FOR SUBSURFACE
QUANTUM DOT STRESSORS

A. Point source of dilatation

For the case of a single point source of expansion lo-
cated a distance & from the surface, the displacement field is
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given by Mura.>** We have differentiated that expression to
obtain strain through the relation &;;= 3(u; ;+u;,;) and sub-
sequently used Hooke’s law, o;;=2u(e;+[v/(1
—v)]8;j€x) to obtain the result

7], {7
=] —xl=
Rl,ij 3R2.3ij

1 1
+(3—4v)(53i+53j_1)(k:) _53j(-R:)
il A

5 ! +v6 4 )
3i§53JVin233,

_ufV(i+y)
= 2m(1=)

where, as before, u is the shear modulus, v is the Poisson’s
ratio, f is the mismatch, V is the dot volume, and 5,~j is the
Kronecker delta. The quantities R, and R, are given by
\bc21+x22+(x3-—h)2 and \/x21+x22+(x3+h)2, respectively.
The notation () ; indicates d/dx;() while repeated indices are
summed from 1 to 3. The use of a finite volume in these
formulas is an approximation, as discussed in the previous
section, since the expressions really derive from differential
equations and are exact for the case of a vanishingly small
inclusion. These expressions are expected to only yield real-
istic results when considering target distances compared with
the characteristic length of the quantum dot, for example, the
stresses at the surface for cases where the quantum dots are
buried sufficiently beneath the surface.

In order to graphically illustrate the stress distribution
near a quantum dot and to facilitate comparisons with other,
more precise representations of the stress field, we use the
trace of the stress tensor o rather than individual compo-
nents. This component is the key quantity for calculating the
interaction energy between a quantum dot and an adatom on
the surface, and thus the driving force for adatom diffusion at
the surface. The trace is related to the pressure through the
relation p= — }o; and is given by

_2,us(1+v)2( 1 )
TR (M=) \Ry)

=2,us(1+y)2 [2(x3+h)2—x2—x2]

m(1—v) [xi+x5+(x3+h)2P? @

The local dilatation, &, is given by —p[3(1
—2v)/2u(1 + v)], where the quotient of elastic constants is
the inverse of what is referred to as the bulk modulus. The
dilatation is of interest due to its effect on the electronic band
structure in and near the quantum dot'® and on dot nucleation
and growth due to the surface diffusion.!*> We note that in
Eqgs. (1) and (2), all terms containing R; comprise the solu-
tion for the case when the point source is embedded in an
infinite medium, and the terms with R, represent the correc-
tion due to the presence of the free surface. Hence o, =0
for an infinite solid but not for the semi-infinite solid. The
effect of the free surface on the dilatation field of various
inclusions was studied in greater detail by Michel et al. 2%

For the case of an ordered array of quantum dots (see
Fig. 3), the stress field can be obtained by summing Eq. (1)
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or Eq. (2) over all dots. For a square array of dots of spacing
/, the trace of the stress tensor at all locations is given by

2ufV(1+v)?
T w(1—v)

xS 3 [2(x3+h)2=(x,—if) 2= (x,—j/)*]
1220 1220 [ =if)?+ (2= )P+ (x3+ B) PP
3

where h represents the depth of the planar array of dots. The
double sum represented in Eq. (3), to our knowledge, has no
analytic representation; however, it can be numerically
evaluated by replacing o with some suitably large integer.

B. Ellipsoidal dilatated inclusion

As shown by Mura,**3 the stress field for an ellipsoidal
inclusion in a half space can be obtained by integrating the
displacement field that gave rise to Eq. (1) over the domain

XA —z—(xé_h)zq )
7{ ;%_ as v

where a;, a,, and a; denote the semiaxes of the ellipsoid
along the respective coordinate directions, and / denotes the
depth of the center of the ellipsoid from the surface. For
points exterior to the inclusion, the stress components take
the form

ufV(1+v)

Gij= 27(1—v) [—¥,j—2x3¢5;+(3—4v)

X(83i+ 83;— 1) ;= (83;+ 835) b ;j +4v ;b 33,

(5)
where
NI
3 (= a%+s a§+s a§+s
p \/(a1+s)(a2+s)(a3+s)
with
2 2 2
V1 Y2 Y3
+ + =
aj+\  aj+\ a§+)\ ! ™
and
. 2 2 22
3 (= a’+s  a‘+s ai+s
¢=__J' 1 2 3 @®
4Jn  J(ai+s)(a3+s)(a5+s)
with
R . ©

al+\N  aitN aith

The coordinate transformation for y; and z; is defined such
that
X1=Y1= 21, X2T Y2523,

X3=y3+h=Z3_h. (10)
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We have found that the integrals represented by Eqs. (6)
and (8), which require the roots of Egs. (7) and (9), respec-
tively, for A can be obtained analytically in terms of elemen-
tary functions if at least two of the semiaxes a;, a,, and aj
are equal. Accordingly, we have chosen a,=a,=3a; for the
example results to be displayed below. The volume of such
an inclusion is given by V= 127ra§. Here, the ellipsoid looks
round when viewed from the surface, but its thickness in the
x3 direction may be varied for a basic study of the effect of
aspect ratio on the stress field.

As with the point sources discussed in the previous sec-
tion, the stress field associated with an ordered array of el-
lipsoidal inclusions may be straightforwardly determined by
summing Eq. (5) over all dot positions, in the precise manner
as shown for Eq. (3).

C. Cuboidal and trapezoidal inclusions (finite-element
method)

The finite element method is best suited to modeling of
elastic fields associated with inclusion geometries more com-
plex than ellipsoids. For the creation of the meshes, we used
a widely available finite-element analysis software applica-
tion, ABAQUS. ABAQUS permits the closely controlled genera-
tion of finite-element meshes through the use of input files
containing complete instructions for node-by-node and
element-by-element mesh specification, along with imposi-
tion of boundary conditions. For a typical trapezoidal inclu-
sion within a matrix unit cell, elastic solutions may be ap-
proximated using a finite-element mesh comprising one
quadrant of an arbitrarily deep matrix unit cell, with appro-
priate boundary conditions imposed at the lateral faces.
Meshes generated included one quarter of a cuboidal or trap-
ezoidal inclusion, at various depths, embedded in a matrix of
identical elastic properties (see Fig. 4). The mesh uses eight-
node linear brick elements with =1 and y=1/3. The mis-
match strain f was taken as unity by identifying the thermal
expansion strain in the inclusion, «AT, with unity. In this
fashion, any value of f may be considered due to linearity.

Depths of the inclusion centroid varied between 3a; and
12a3;, for direct comparison with point source and ellipsoidal
inclusion results (recall a; denotes the half-height of the el-
lipsoidal inclusion). The FEM domain has lateral dimensions
of 6a; in each direction, appropriate for an interinclusion
spacing of 12a5. For the inclusion shape, truncation angles
of 0° and 30° were used (see inset, Fig. 4). The former we
refer to as a cuboid, and the latter a trapezoid. The lateral
dimension of the inclusion is determined by enforcing that its
volume is identical to that of an ellipsoidal inclusion with the
same height, 2a;. With the volume and thickness fixed,
there is an inclusion base dimension associated with each
choice of truncation angle «. The inclusions consist of 125
evenly spaced elements, while the matrix elements include a
dimensional bias such that they become larger near the far
walls, but smaller again as they approach the free surface.

Two general types of cases were investigated. The sim-
plest was the case of a single inclusion submerged in a semi-
infinite half space. The second type of case involved an in-
finite two-dimensional array of submerged inclusions. The
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FIG. 4. Mesh used in finite element calculations of elastic fields for (a)
cuboidal (@=0°), and (b) trapezoidal («=30°) quantum dot configura-
tions. One quarter of the domain is needed in this calculation due to fourfold
symmetry about the longitudinal axis. The inset shows the critical param-
eters used to describe the geometry of the quantum dot, including the trun-
cation angle a. The depth £ is always taken from the centroid of the quan-
tum dot, and the lateral dimension of the dot is chosen such that its volume
is the same as an ellipsoidal dot discussed in Fig. 3.

latter is more difficult to approximate using analytical ap-
proaches because of the sum given by Eq. (3). Somewhat
surprisingly, however, the periodic case presents fewer ob-
stacles to the finite-element approach than does the singular
case.

For models of a single trapezoidal inclusion submerged
in a semi-infinite half space, we insist that normal displace-
ment must vanish at the two walls in contact with the inclu-
sion, consistent with the division of the inclusion (and matrix
unit cell) into symmetric quadrants.

The bottom surface is constrained similarly, although the
type of condition imposed at the bottom is less important
than the depth, which should be sufficiently large to be con-
sidered “‘far field.”” It must be admitted that the use of the
same boundary condition as that imposed at the lateral walls
in contact with the inclusion does, in fact, give rise to a
similar periodicity in depth, which is not intended. However,
with a large dimension of matrix below the inclusion, the
effect of this depth image stress field will be minimal. We
could just as easily use a fully encastered or free boundary
condition (or any other that would result in a traction-free far
field surface condition), so long as the depth is large and
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FIG. 5. Plots of stress o versus dot depth, for an isolated dot, for the
various models considered in this article. In all cases, the solid line is for an
ellipsoidal inclusion (a; =a,=3a3); the dashed line is for a point source of
dilatation, the open square is for the FEM model of the cuboid, and the
closed triangle is for the FEM model of the trapezoidal dot. In (a) and (b) we
show the trace of the stress tensor at the surface directly above the dot. In (c)
and (d) we show the stress at the surface, evaluated at depth ¢/2 (where c is
related to the volume of the dot by c=V'?), above the dot. In (e} and (f) we
show the interface stress, that is, the stress evaluated just above the dot/
matrix interface. The location of stress evaluation is further indicated in the
insets. The figures in the right column [(b), (d), and (f)] use a log-log scale
to illustrate the asymptotic dependence of stress on dot depth (ou~h™%
for large depths.

inclusion volume is small in comparison to the matrix vol-
ume. Since the intention is to simulate a semi-infinite do-
main, the depth of the matrix below the deepest inclusion
must be “‘much larger” than the thickness of the matrix
separating the inclusion from the surface. For a finite-
element model limited to a relatively small number of ele-
ments, this requirement becomes increasingly costly with
larger quantum dot submergences. In each case, we make the
depth of the overall mesh large enough that there is at least
four times more matrix below the base of the inclusion than
above it.

The two remaining lateral walls in the mesh for the iso-
lated quantum dot must not reflect a symmetry between
groups of four unit cells (to do so would imply an infinite
two-dimensional array of submerged inclusions). Rather, we
use a condition similar to that used at the bottom surface,
that is, we require that the distance between the inclusion and
the far lateral walls be large.

For the periodic case, symmetry was enforced with a
zero normal displacement condition at all four lateral walls,
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so that the elastic field within the mesh is representative of
an infinite two dimensional array of submerged inclusions.
The zero normal displacement condition results in a mirror
image stress field, which if imposed at each lateral wall,
appears as the intended inclusion array. Typical meshes in-
cluded in this investigation contained between 6000 and
10000 total elements.

IV. RESULTS AND DISCUSSION
A. Single quantum dot

We have seen how stress fields can be obtained for sub-
merged inclusions using the point dilatation model, the mis-
fitted ellipsoid model, or the finite-element cuboid and trap-
ezoid models. Comparison of these fields is undertaken here
by evaluation of the trace of the stress tensor (o) at three
points of interest: the surface directly above the dot (x3
=0), a depth ¢/2 below the surface, where c=V'?, and the
upper surface of the dot (at the interface between the dot and
the matrix). The latter location is not shown for the point
source of dilatation, since the precise interfacial position is
not defined. Throughout, Poisson’s ratio is taken as 1/3. For
the ellipsoid, the aspect ratio is taken as 3, ie., a;=a;
=3a;. For the cuboid and the 30° trapezoid, the same height
and volume are used as for the ellipsoid.

Figure 5(a) shows the variation of stress at the surface
with inclusion depth h. As expected, the stress asymptoti-
cally approaches zero as the inclusion is moved further from
the surface. The same information is shown on a log-log plot
in Fig. 5(b), where it can be seen that the slope of the curves
approaches —3, indicative of the 1/h3 decay of stress. More-
over, the point source and ellipsoidal stresses converge as the
dot exceeds 1.5 to 2 times the cube root of the volume of the
ellipse ¢, which may be regarded as a characteristic length
for this stress field. The FEM results are shown as discrete
points lying quite close to the ellipsoidal stress curve.

Figures 5(c) and 5(d) show the stress component gy, at a
depth ¢/2 from the surface. Again, good convergence be-
tween the ellipsoid and the point source solutions occurs as
the depth of the inclusion exceeds 1.5¢ to 2¢. Both sets of
finite-element results are in good agreement with the analytic
results. The calculated FEM data points in all cases thus far
[Figs. 5(a)-5(d)] tend to show slightly more disagreement as
the depth of the dot increases. We speculate that this is tied
to boundary effects, that is, artificial ‘‘image’’ components
exist due to the four lateral faces of the mesh, as well as the
bottom surface of the mesh (the latter of which is expected to
dominate more for deeper inclusions), which are not mani-
fested in the ellipsoidal or point source solutions.

Finally, in Figs. 5(¢) and 5(f), we show the stress just
outside of the dot as it is moved from the boundary. Inter-
estingly, this stress component decays to zero. This result,
though not intuitive, was first noted by Eshelby”'® and does
not hold for the other individual stress components at this
location. In fact, the stress component g, vanishes every-
where outside the ellipsoid (and the point force) in an infinite
medium. The image errors mentioned earlier still apply to
the FEM data points. In addition, the exact details of the
shape of the inclusion should be more important here than in
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FIG. 6. Contour plots of the trace of the stress tensor at the surface o (in
units of fu), for an array of quantum dots at depth 3a; and spacing #
=12a;. In all cases, positive stresses are denoted by a solid line, negative
values are denoted by a dashed line, and a zero value of stress is indicated
by the long dashes. (a) Array of point dilatations: values of the nonzero
contours are (1) —0.3, (2) —0.2, (3) 0.3, and (4) 0.8, with a minimum of
—0.31 and a maximum of 3.3. (b) Array of ellipsoids (a; =a,=3a,;): val-
ues of the nonzero contours are (1) —0.4, (2) —0.3, (3) —0.2, (4) 0.3, (5)
1.0, and (6) 1.5, with a minimum of —0.42 and a maximum of 1.8. (c) Array
of cuboids: values of the nonzero contours are (1) —0.38, (2) —0.3, (3)
—0.2, (4) 0.3, (5) 1.0, and (6) 1.5, with a minimum of —0.4 and a maximum
of 1.9. (d) Array of trapezoids: values of the nonzero contours are (1)
—-0.29, (2) —0.25, (3) ~0.1, (4) 0.3, (5) 0.7, and (6) 1.0, with a minimum of
—0.28 and a maximum of 1.9.
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FIG. 7. Contour plots of the trace of the stress tensor at the surface oy, (in
units of fu), for an array of quantum dots at depth 6a; and spacing /
=12a;. In all cases, positive stresses are denoted by a solid line, negative
values are denoted by a dashed line, and a zero value of stress is indicated
by the long dashes. (a) Array of point dilatations: values of the nonzero
contours are (1) —0.1, (2) —0.05, (3) —0.02, (4) 0.05, (5) 0.1, and (6) 0.2,
with a minimum of —0.11 and a maximum of 0.3. (b) Array of ellipsoids
(ay=a,;=3as3): values of the nonzero contours are (1) —0.1, (2) —0.05, (3)
~0.02, (4) 0.05, (5) 0.1, and (6) 0.2, with a minimum of —0.14 and a
maximum of 0.28. (c) Array of cuboids: values of the nonzero contours are
(1) —0.1, (2) —0.05, (3) —0.02, (4) 0.05, (5) 0.1, and (6) 0.2, with a mini-
mum of —0.13 and a maximum of 0.25. (d) Array of trapezoids: values of
the nonzero contours are (1) —0.09, (2) —0.05, (3) —0.02, (4) 0.05, (5) 0.1,
and (6) 0.15, with 2 minimum of —0.1 and a maximum of 0.22.
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FIG. 8. Contour plots of surface stress o7 (in units of fu), for an array of
quantum dots at depth 12a; and spacing /=12a;. In all cases, positive
stresses are denoted by a solid line, negative values are denoted by a dashed
line, and a zero value of stress is indicated by the long dashes. (a) Array of
point dilatations: values of the nonzero contours are (1) —0.005, (2) —0.004,
(3) —0.002, (4) 0.002, (5) 0.005, and (6) 0.009, with a minimum of —0.0071
and a maximum of 0.0093. (b) Array of ellipsoids (a; =a,=3a5): values of
the nonzero contours are (1) —0.006, (2) —0.004, (3) —0.002, (4) 0.002, (5)
0.005, and (6) 0.008, with a minimum of —0.0072 and a maximum of
0.0093. (c) Array of cuboids. The values of the nonzero contours are (1)
—0.005, (2) —0.004, (3) —0.002, (4) 0.002, (5) 0.005, and (6) 0.007, with a
minimum of —0.0066 and a maximum of 0.0083. (d) Array of trapezoids:
values of the nonzero contours are (1) —0.004, (2) —0.002, (3) —0.001, (4)
0.001, (5) 0.003, and (6) 0.005, with a minimum of —0.0056 and a maxi-
mum of 0.0068.
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the earlier cases; therefore, it is not surprising that the trap-
ezoid and cuboid results show a modest level of disagree-
ment with the analytical solution.

B. Ordered array of dots

In this section we consider a square array of dots at
various prescribed depths # and spacing /= 12a; [see Fig.
3(b)]. We continue to use the stress trace (o) as a basis for
comparison. Specifically, we use surface contour plots of the
stress trace predicted by the point dilatation, ellipsoid, and
finite-element models. These plots for the trace of the stress
tensor at the surface are shown in Figs. 6-8. No evaluation
was made of differences between stresses below the surface.

In Figs. 6(a)-6(d) we show stress contours for an array
of dots at depth A=3a5. Specific values denoted by the con-
tours, as well as the maximum and minimum values, are
given in the caption in units of fu. The extrema of the stress
distribution appear directly above a given dot, as well as
directly above a square quadruplet of four dots. Of all the
depths we consider, the dissimilarities between all four re-
sults are most evident here, due to the close proximity of the
dots to the surface. Moreover, we note the symmetry of the
stress distributions due to the point dilatation and the ellipse
are of a circular nature, while for the cuboid and trapezoid,
the perfect circular symmetry is slightly broken. In other
words, the contours reflect the shape of the particular dot. As
the dot moves closer to the surface, we expect this feature to
become more dominant.

In Fig. 7 the corresponding results are shown for an
array of dots at depth h=6a5. There is moderate quantita-
tive agreement between all four models, indicating that the
precise shape of the dot is a much less important factor at
this depth. In addition, elements of a square-like symmetry
begin to appear in the stress distribution at locations removed
from the point directly above any given dot. Moreover, this
square-like motif in the stress contours in rotated by 45° with
respect to the original square lattice of dots.

Finally, in Fig. 8, the results are shown for an array of
dots at depth h=12a5. A square-like symmetry to the stress
distribution (also rotated by 45°), similar to the previous
case, is more pervasive. The quantitative level of agreement
is good, but not nearly as good as expected for this depth.
Several sources of error can be identified that can explain the
disagreement: in the FEM results, no image contributions are
expected from the lateral walls of the mesh, since the peri-
odic nature of the geometry is perfectly captured. However,
the image error from the bottom surface is expected to be
most prevalent at this depth than in the earlier cases. In ad-
dition, the number of terms needed for the sums in Eq. (3) to
obtain good convergence (applicable to the point of dilata-
tion and ellipsoid arrays) became exceedingy large when h is
greater than ~10a;, and accordingly, we are confident of
the results in Figs. 8(a) and 8(b) only to within about *+5%.

V. SUMMARY

We conclude that over a wide range of geometries,
simple analytical models based on ellipsoids, or to some ex-
tent based on point dilatations, may be the most efficient
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means of obtaining reasonable estimates of the elastic
stresses associated with quantum dots. In particular, the
finite-element models described in this article very closely
matched the predictions of the ellipsoidal inclusion model in
the isolated and periodic cases. This close correspondence
between the analytical ellipsoid and the FEM cuboid/
trapezoid persists to remarkably shallow submergence
depths, indicating a potentially high usefulness in modeling
typical three-dimensional dot array geometries.

The exception to the close match of ellipsoid and finite-
element models is the case of predicted stresses at the upper
interface between the dot and the matrix. The interface lies in
a region characterized by large stress gradients, which would
have an expected detrimental effect on the accuracy of the
finite-element models. However, even with an exceptionally
fine mesh, differences in modeled dot shape should be ex-
pected to give rise to variations in predicted stress values at
the interface. These differences would be attributed both to
variations in interface depth and to differences in local stress
concentrations at the top center interface of dots of different
shape.

Of perhaps more use to the modeler of SAQD systems is
that only one *‘primary’’ dot (or region associated therewith)
should be considered in detail, while all other dots may be
approximated as ellipsoids or point sources.

Finally, we note that the calculations in this article
clearly show that quantum dots either on the free surface or
near the free surface lead to large hydrostatic stresses and
strains in the matrix. The hydrostatic strain will lead to
changes in both the conduction and valence band levels. We
believe that this effect should be included in the treatment of
the matrix electronic properties for near surface dots and
Stressors.
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We demonstrate a self-assembling method for growing semiconductor quantum dots into ordered
lattices. The quantum dot nucleation and positioning into lattices was achieved using a periodic
subsurface stressor lattice. Three different two-dimensional 2D ! square lattices are demonstrated.
The unit cell dimensions, orientation, and the number of quantum dots in the basis are tunable. We
find that the 2D lattice can be replicated at periodic intervals along the growth direction to form a
three-dimensional 3D ! lattice of quantum dots. © 200! American Institute of Physics.
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Semiconductor self-assembled quantum dots ~QDs !’
provide a convenient means of exploring the physics of zero-
dimensional D! quantum confined systems. The size of
QDs is on the order of the electron wavelength and the car-
rier energy levels are quantized. The sequential loading of
electrons and holes and the 3D confinement character of the
carriers in the QDs have been previously demonstrated.”™®
The sharp density of states in the QDs yields, as expected,
ultra narrow luminescence lines and several studies have re-
cently shown the importance and complexity of many-body
effects in the relaxation processes involved in strongly ex-
cited quantum dots.’®"™ In addition to their *‘atom-like’’
properties, the potential application of QDs has been ex-
plored in a wide variety of novel devices.''®

Moving from random arrays of ‘‘atom-like’” QDs to the
QD lattice would offer the possibility of novel and unex-
pected properties Which willbe Tied fo the electronic or pho-
tonic quantum dot coupling within the array. Ideally, the
quantum dot lattice shoutd have Tong-range order as well as
a controllable crystal structure with an adjustable number of
QDs in the basis. These ideal properties have not yet been
achieved and usually when discussing properties of self-
assembled QDs, one deals either with an isolated QD or an
ensemble of QDs that are randomly distributed on a plane
within a structure. In this case, the electronic coupling is not
controlled and is dependent on the QDs density.

In this letter, we discuss a method for self-assembling
QDs into periodic lattices using a coherently strained layer
deposited by molecular-beam epitaxy over a semiconductor
substrate.

Previous attempts to produce spontaneous long-range or-
der in self-assembled QDs using epitaxial deposition may be
classified in two categories: -a! prepatterning methods which
make use of differences in atomic diffusion on faceted sur-
faces to control island nucleation' and -b! techniques which
are using a built-in strain anisotropy introduced on the grow-
ing surface.2%-2* The growth of PbSe quantum dots in strain-
symmetrized PbSe/Pb,Eu,, ,Te superlattices24 is an example
of this second category where the spontaneous long range
quantum dot ordering into a hexagonal lattice is associated
with the strong elastic anisotropy of this material system.

3'Electronic mail: petroff @engineering.ucsb.edu

0003-6951/2001/78(1)/105/3/$18.00

QDs are formed by epitaxial deposition of coherently
strained islands and their nucleation is a random process ini-
tiated at step edges.® The randomness of the nucleation pro-
cess, even for the case of interacting nuclei growing on an
infinitely long and narrow strip of surface, has been demon-
strated experimentally’® and simulated.”> To minimize the
random nucleation, a promising approach appears to nucleate
the QDs on a limited surface area such as a mesa top with
nanometer dimensions.

To obtain such a periodic lattice of nucleation sites, we
make use of surface diffusion on faceted surfaces with a
built-in lattice of stressors. We use a periodic strain pattern
induced by a coherently strained subsurface stressor layer of
In,Ga;, ,As(x’ 0.2) regrown on a $100% GaAs patterned
surface. A square lattice of mesas was patterned on a mo-
lecular beam epitaxy ~MBE ! deposited GaAs film using op-
tical holography on a photoresist film. After the photoresist
development and chemical etching in a H3PO4:H,0,:H;0
5 3:1:75 solution, the mesas generated on the surface have a
square base with ; 170 nm sides and ; 25 nm height. The
2D mesa square lattice has a periodicity of ; 250 nm along
the unit cell primitive vectors. The processed substrates were
introduced into the MBE chamber and the oxide layer was
thermally desorbed at 630 °C under an As, flux before 60 nm
of GaAs layer was deposited at 600 °C to remove the oxide
induced surface damage. An Ing,GaggAs stressor layer and a
10 nm GaAs spacer layer were then deposited at lower sub-
strate temperature ~510 °C ! to reduce the indium surface mi-
gration. The sample temperature was then raised to 530°C
for the deposition of the InAs islands. The island formation
was followed by changes of the reflection high-energy elec-
tron diffraction pattern and their formation was detected after
; 1.7 ML of InAs deposition. To transform the islands into
quantum dots for the photoluminescence measurements, a 10
nm thick top GaAs layer was deposited on top of the islands
at 600 °C.

AFM images of three different island lattices formed on
top of the mesas are shown in Fig. 1. The three different
lattices have unit cells that differ by the orientation of their
unit vectors. They were obtained from substrates which were
prepatterned with the mesa edges parallel to the 100§ “110&
and 30° off a ~110&direction for the AFM shown in Figs.
1-al 1~ and 1-b, respectively. Over 90% of InAs QDs are

© 2001 American Institute of Physics
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FIG. 1. AFM image of three different island lattices with a square unit cell
and a basis of three or four quantum dots aligned along a “110&direction.
The vertical direction for all the micrographs is @10# The unit cell dimen-
sions is 2503 250 nm for all the lattices and the unit cell vectors directions
are indicated for the three different lattices in -a !, -b!, and ~¢ L. The insets for
each lattice are also shown at higher magnification.

found on top of mesas for these samples. In all three cases,
the lattice periodicity, ; 250 nm, is that of the mesa lattice.
The basis of these square lattices contains between three and
our islands on average. The islands have diameters ranging
from 27 to 45 nm and heights between 4 and 10 nm. When
the islands are closely packed on top of the mesas, they
appear separated and within the resolution of the AFM with
no evidence for coalescence. The density of islands in these
lattices is ; 53 10° cm?2. For a nonpatterned sample which
was grown simultaneously with the patterned sample, the
measured island density was ; 73 10° cm?2. We find that
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FIG. 2. AFM images of InAs islands distribution for three different stressor
layer thicknesses. The graph shows the percentage of InAs islands on top of
the mesas as a function of stressor film thickness. The points indicated as
-l -b), and ¢! on the graph correspond to the AFM micrographs, respec-
tively. ~! The lattice period is 250 nm and the unit cell sides are aligned
along the ~100&directions while the basis of the lattice is aligned along a
~110&direction.

observed from regrowth on mesas with different orientations
or periodicity. The percentage of InAs islands nucleating on
top of the mesas as a function of the stressor layer thickness
is also shown in Fig. 2.

To better understand the stressor film effects, the in-
plane stress distribution in the different layers is modeled
using a finite element elasticity calculation. The in-plane
stress is computed using a 1D periodic mesa-valley structure
with dimensions similar to the experimental one. A TEM
cross section of the mesas and valley profile for an
Iny ,Gag gAs ~four layers, 5 nm thick YAlAs -three layers, 1
nm thick! stressor film is shown in Fig. 3. The measured
height difference between the mesa tops and valleys is ; 5

the lattice period is adjustable by changing the mesa lattice ~ nm and the width of the mesa tops is ; 20 nm. As a first

eriod. The number of islands in the basis is controlled
through the amount of indium and the mesa size.

We have also successfully grown samples with stacks of
QDs lattices of the type shown in Fig. 1-¢L Cross section
transmission electron microscope -TEM! studies of these
samples indicate that strain coupling effects? between layers
of QDs spaced by 10 nm are efficiently propagating the lat-
tice of QDs from one layer to another. The TEM cross sec-
tion also shows that these 3D QDs lattices are dislocation
free.

Since the nucleation of the coherently strained InAs is-
lands takes place as a strain relaxation process, one of the
essential elements in controlling their nucleation is the pres-
ence of a periodic strain variation on the growth surface.
These are formed by combining the mesa with a coherently
strained layer below the surface. The nucleation of the InAs
islands was compared for stressor film thickness of 0, 5, 10,
12, 15, and 20 nm. The AFM images in Fig. 2 show the InAs
islands on patterned substrates for stressor film thickness of
0, 12, and 20 nm. For a structure with a stressor film thick-
ness below 5 nm, all the islands are formed between mesas
while for a 20 nm InO,,GaygAs stressor layer nearly all
islands nucleate on the mesa tops. In Fig. 2, the island lattice
is similar to that shown in Fig. 1-¢ ! Similar results were also

approximation, the Iny,GaggAs stressor film thickness -20
nm! is taken as a constant between the valleys and mesa
tops. This assumption is supported by high-resolution TEM
cross section measurements that also show that the films are
coherently strained with no dislocations. Figure 3 shows a
plot of the in-plane stress as a function of position in the
InAs wetting layer which is formed on top of the GaAs 100
A layer prior to the nucleation of the InAs islands. For com-
parison, Fig. 3 also shows the in-plane stress distribution as a
function of position in the wetting layer for a structure which
does not contain a stressor layer. The stress data for both
curves have been normalized to the stress between a lattice
mismatched GaAs and InAs film. The sharp spikes in the
stress at the bottom and top of the facet delimiting the mesa
edge are related to the finite size of the mesh -also shown in
Fig. 3! used for the computation. This simplified model in-
dicates a ; 3%—-4% in-plane stress difference between the
mesa top and valleys of the wetting layer. The observed pref-
erential nucleation of InAs islands on the mesa tops is con-
sistent with the computed compressive stress distribution for
a structure with a sufficiently thick stressor film.

The electronic quality of QD lattices is an important is-
sue for all self-assembling methods that involve a regrowth
process.”® As shown in Fig. 4, the ordered lattice shows a
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FIG. 3. Cross-section TEM image of an Iny,GaggAs ~four layers, 5 nm
thick YAlAs -three layers, 1 nm thick! stressor film. The AlAs layers have
been inserted to underline the mesas and valleys profiles. The @04# dark
field imaging conditions are such that the AlAs layers are shown as white
layers. A finite element calculation of the in-plane stress distribution for the
InAs wetting layer -solid line ! is also shown for the areas between A and B
on the TEM image. The thin gray line shows the computed stress distribu-
tion in the InAs wetting layer for a structure which does not contain the
Ing,GaygAs stressor layer. The negative values of the normalized stress
indicate compressive stresses and the mesh used for the calculation are also
shown.

higher photoluminescence -PL! efficiency than the random
lattice deposited at the same time. For the QDs lattice, the PL
peaks at 1.16, 1.22, and 1.269 eV correspond, respectively,
to the ground state and excited states emission. The random
QD array shows PL lines at 1.142, 1.203, and 1.269 eV
which, respectively, correspond to the ground state and ex-
cited states emission. The two spectra have been normalized
at the GaAs donor—acceptor pair emission line at ’ 1.51 eV.
The higher PL efficiency of the QD lattice is surprising since
the QDs density in the lattice (* 53 10° cm?2) is about the
same as that of the random array. This effect may be related
to a higher collection efficiency of the mesa structure. The
narrower line widths for the ordered lattice is consistent with

8
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FIG. 4. Photoluminescence spectra at 4.3 K of a 2D QD lattice ~dark line!
and a random QD ensemble -gray line ! of QDs deposited at the same time
on an unpatterned substrate. The optical pump power density is 2.5 kW/cm?.
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either reduced size dispersion for the QDs in a lattice and/or
electronic coupling of the closely spaced QDs in the crystal
basis. In Fig. 4 the PL line at * 1.34 eV associated with the
Ing ,Gag gAs ~four layers, 5 nm thick YAlAs -three layers, 1
nm thick ! stressor layer.

We have demonstrated the controlled formation of two-
and three-dimensional QD lattices using a surface strain en-
gineering method. In the present work, we have carried out
experiments showing that the Iattice period and unit cell
structure and size of the 2D lattices are tunable by adjusting
the mesa lattice using lithography.

This work was supported by an ARO Grant No.
DAAD19-99-1-0372 and an AFOSR Grant No. F49620-98-
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